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The control scheme using fuzzy modeling and Parallel Distributed Compensation (PDC) 

concept is proposed to provide asymptotic tracking of a reference signal for the flexible joint 

manipulators with uncertain parameters. From Lyapunov stability analysis and simulation 

results, the developed control law and adaptive law guarantee the boundedness of all signals in 

the closed-loop mult i - input /mult i -output  system. In addition, the plant state tracks the state of 

the reference model asymptotically with time for any bounded reference input signal. 
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I. Introduction 

Fuzzy logic controllers are generally applicable 

to plants that are poorly understood in mathe- 

matics and where the experienced human opera- 

tors are available. However, the fuzzy control 

has not been regarded as a rigorous science due 

to the lack of the guarantee of the global stabi- 

lity and acceptable performance. To overcome 

this drawback, since Takagi-Sugeno (TS) fuzzy 

model (Takagi et al., 1985) which can express a 

highly nonlinear functional relation in spite of 

a small number of fuzzy implication rules was 

proposed, there have been significant research on 

the stability analysis and systematic design of 
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fuzzy controllers (Tanaka et al., 1992; Wang 

et al., 1996 ; Chen et al., 1996). In their researches, 

the nonlinear plant is represented by a TS fuzzy 

model and the controller design is carried out 

based on the fuzzy model via the so-called Par- 

allel Distributed Compensation (PDC) scheme 

and Linear matrix inequality based optimization 

(Hong et al., 2003). 

Many researches on the control of flexible joint 

manipulator have been done such as the model 

based approaches which include feedback lin- 

earization scheme (Khorasani et al., 1990) and 

invarient manifold scheme (Khorasani et al., 

1985a; Khorasani et al., 1985b) robust control 

(Spong, 1987) and adaptive control (Lozano et 

al., 1992; Chen et al., 1989). However, although 

the joint flexibility has demonstrated some po- 

tential merits, the difficulty with modelling and 

controlling such a flexible mechanical system 

with high performance made most robot designers 

prefer to manufacture mechanically rigid arms 

with stiff joints. Hence, in this paper, we will 
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tackle the problem of controlling for flexible 

joint  robots via fuzzy modeling and fuzzy model 

based controller and propose a complete solution 

to solving the problem of model uncertainty. 

In order to deal with the uncertainties of non- 

linear systems, in the fuzzy control system litera- 

ture, a considerable amount of adaptive schemes 

have been suggested (Chen et al., 1996 ; Spooner 

et al., 1996). An adaptive fuzzy system is a fuzzy 

logic system equipped with an adaptive law. The 

major advantage of adaptive fuzzy controller over 

the conventional adaptive controller is that the 

adaptive fuzzy controller is capable of incorpora- 

ting linguistic fuzzy information from human 

operators (Wang et al., 1996 ; Tsay et al., 1999). 

Most of them were based on the feedback lin- 

earization scheme or indirect adaptive approach 

in which the approximating ability of the fuzzy 

system was utilized or an online adaptat ion sche- 

me was usually used to estimate the unknown 

structure and parameters of the system and an 

appropriate controller was then designed to con- 

trol the plant to satisfy a desired performance 

(Fischle et al., 1999 ; Leu et al., 1999). However 

they all used the original nonlinear plant model 

as the platform of  the stability analysis. If the TS 

fuzzy modeled plant model can be available, the 

adaptive scheme based on the obtained TS fuzzy 

model is much prefer. Hence, in this paper, to 

control the flexible joint  manipulator,  we present 

direct adaptive fuzzy controller based on TS fuzzy 

model reference approach, in which the desired 

process response to a command signal is specified 

by means of a parametrically defined reference 

model, for MIMO plants with poorly understood 

dynamics or plants subjected to parameter uncer- 

tainties. We utilized TS fuzzy model for flexible 

joint  manipulator  configurations with uncertain 

parameters and PDC as the controllers. The adap- 
tation law for adjusting the parameters in feed- 

back and feedforward gain of PDC controller is 

designed so that the fuzzy modeled plant output 
tracks the reference model output. 

2. T - S  Model  Based Control 

Consider the continuous-t ime nonlinear system 
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described by the Takagi-Sugeno fuzzy model. 

The ith rule of continuous-t ime TS model is of 

the following form : 

R i :  I f x , ( t )  is 11,/1" and " '  and xn(t) is M / 
(1) 

Then •  =Afx( t )  + Biu(t) 

where x T ( t ) = E x l ( t ) ,  xz(t), "", Xn(t) ] 
uT(t)=Eu,(t), u2( t ) ,  ..., Urn(t)]. 

Given a pair of input ( x ( l ) ,  u(t)),  the final 

output of the fuzzy system is inferred as follows : 

l 

~.wi(t) { Aix(t) + B~u(t) } 
x ( t )  = ~=' (2) l 

i=1 

n 

where w,(t)=IIMj(x~(t)), and Mj(x~(t)) is 
5= 1 

the grade of membership of xj(t) in Mj. 
In order to design fuzzy controllers to stabilize 

fuzzy system (Eq. (2)),  we utilize the concept of 

PDC. The PDC controller shares the same fuzzy 

sets with fuzzy model, Eq. (2) to construct its 

premise part. That is, the PDC controller is of the 

following form : 

i R i :  I f x l ( t )  i s M ?  a n d - "  and x,(t)  i s M g ( 3  ) 
then u( t )=- -Kix ( t )  

where xT(t)=Ex~(t), x2(t), "", x,(t)] and 

i = l , " ' , l .  
Given a state feedback x( t ) ,  the final output 

of the fuzzy PDC controller, Eq. (3) is inferred as 

follows : 

l 

~.w~( t) K~x(t) 
u(t) = i=x (4) 

l 

Nw,(t) 
i=1 

n 

where wi(t) =IIMj(xj( t)  ). 
5=1 

By substituting the controller, Eq. (4) into the 
model, Eq. (2), we can construct the c losed- loop 

fuzzy control system as following : 

l l 

~ S2.w,( t) w:( t) { A , -  B,K~ }x( t )  

l l 

NNw~(t) ws(t) 
i = l j = l  

A sufficient condition for ensuring the stability of 

the c losed- loop fuzzy system, Eq. (5) is given in 
Theorem 1, which was derived in the research 

(Wang et al., 1996). 
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T h e o r e m  1: The equilibrium of a fuzzy control 

system, Eq. (5) is asymptotically stable in the 

large if there exists a common positive definite 

matrix P such that 

G~ P + PG,s = - Q~ (6) 

for  all i, j = l ,  2, ".., l 
where G,~=A~-B~K~ and Oia is a positive defi- 
nite matrix. 

The design problem of model based fuzzy con- 

trol is to select K j ( j = I ,  2, " ' ,  l) which satisfy 

the stability conditions, Eq. (6). In the research 

(Wang et al., 1996), the common problem was 

solved efficiently via convex optimization techni- 

ques for LMI's (Linear Matrix Inequality) (Hong 

et al., 2003). However, the fuzzy PDC control, 

Eq. (4) does not guarantee the stability of system 

in the presence of parameter uncertainty. More- 

over, the design of the control parameters is not 

possible for the systems whose parameters are 

unknown. In order to overcome these drawbacks, 

in this research, an adaptive control scheme is 

developed for the plant models whose parameters 

are unknown. 

3. Adaptive Model Reference 
Fuzzy Control 

In this section, an adaptive model reference 

fuzzy control scheme for MIMO TS fuzzy system 

is developed. Consider again the nonlinear plant 

represented by the TS model, Eq. (1) or Eq. (2), 

where state x ~ R  n is available for measurement, 

A i E R  ~• B i e r  ~• ( i = 1 ,  ..., l) are unknown 

constant matrices and are controllable. The con- 

trol objective is to choose the input vector U ~ R  q 

such that all signals in the closed-loop plant are 

bounded and the plant state x follows the state 

x m ~ R  ~ of a reference model specified by the 

system 

l l 

X X U'i (X)/1/(X){ (Am)i;xm + (Bin),sr } 
.~m= i=1~=1 (7) 

l l 

IgXw,(x) m(x) 
i= lJ= 1 

where (Am) i s ~ R  ~• ( i=1 , - - - ,  l) satisfy the sta- 

bility condition of fuzzy system given in Theorem 

1 and r ~ R  q is a bounded reference input vector. 

The reference model and input r are chosen so 

that xm(t)  represents a desired trajectory that x 

has to follow. 

If the matrices Ai,  Bi  were known, we could 

apply the control law 

l 

u =  ; ~ m  ( x ) ( - K f l x + L * r )  
, (81) 

;~m(x) 
where 12j (x) = wj (x) ,  and obtain the closed-loop 

plant 

l l 

52. X w, (x) t~J (x) { ( A , -  B,K? ) x +  B,L * r } 
.~_ i=lj=l (9) 

I l 

~2Xw,(x) a~(x) 
i = l j = l  

Hence, if t ( f E R  q• and L ~ R  q• are chosen 

to satisfy the algebraic equations 

A , - B , K ~ *  = (Am),~, B,L* = (Bin)ij (10) 

then the transfer matrix of the closed-loop plant 

is the same as that of the reference model and 

x(t)--* xm (t) exponentially fast for any bounded 

reference input signal r ( t ) .  However, the design 

of the control parameters is not possible for the 

systems whose parameters are unknown. To over- 

come this drawback, in this research, following 

controller is developed for the plant models of 

which parameters are unknown. 

Let us assume that K f ,  L* in Eq. (I0) exist, 

i.e., that there is sufficient structural flexibility to 

meet the control objective, and propose the con- 

trol law 

l 

~ / # ( x )  ( - K j ( t )  x +  Ls( t )  r) 
U :  t (11)  

.~m(x) 

where, K~(t),  L~(t)  are the estimates o f K f ,  L*, 

respectively, to be generated by an appropriate 

adaptive law. 

By adding and subtracting the desired input 

term, namely, 

! l 

~, (x) { - B ,  (Kj* x -  L* r) }/~/2~ (x) 

in the plant equation and using Eq. (10), we 

obtain 
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l l 

~]~s re(X) (Am)is 
X ~  t ~ l j ~ l  

l t "~ 

ZZwi (x )  m(x) 
i = l j = l  

l l 

~Ew, ( x )  m(x) (Bin). 
4 ~=u=~ r (12) l l 

ZZw,(x) /~(x) 
i= 1 j= 1 

! l 

~, 52,w~(x) re(x) B~( K: x -  L * r + u) 
@ i~  lfi= I 

l l 

NZu,~(x) re(x) 
i=  l j = l  

Furthermore, by adding and subtracting the estl- 
l l 

mated input term multiplied by Y],w~Bi/~,wi, 
i=1  i = l  

that is, 

l l 

Nw~B~ { Izs(x){(Ks(t)x-L.i( t)r)} 
i= 1 "j~= l 

i=l  = 

in the reference model (Eq. (7)),  we obtain 

l l 

EEw,.(x) m(x) (A~) ~j 
X r a :  i=lj=l 

l l X m  

EEw,(x)~(x) 
i= l j =  1 

l l 

EEwi(x) /tj(x) (Bin)ij 
i = l j = l  

i t  r (13) 
EEw~(x) m(x) 
i=lj=l 

l l 

~ w ~ ( x )  zs(x) B~(Kj(t) x -  L~(t) r+ u) 
_~ i -  l j=  I 

l l 

E E U I i ( X )  ~ l j ( X )  
i= I j= I 

By using Eq. (12) and Eq. (13), we can express 

the equation of the tracking error defined as 

e(t) &x(t) --Xm(t), i.e., 

l l 

~,~,,W,(X) lZ~(X) (Am),~ 
e =  i =  l j =  1 

Z Z w , ( x )  m(x) 
i = l j = l  

t t (14) 
~,~Wi(X) re(X) Bi(--ff,~x+ f~r) 

~_ i = l j =  1 
l I 

EZw~(x) m(x) 
i :  l j =  1 

where [ ~ : K ~ ( t ) - K ~ *  and / ~ j : L s ( l ) - L * .  

In the dynamic equation, Eq. (14) of tracking 
error, BI is unknown. We assume that L* is 
either positive definite or negative definite and 
define IPfl:L*sg~(l~), where /~ :1  if L* is 

positive definite and [ ~ : - - 1  if L* is negative 
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definite. Then B i = ( B m ) i j L ~  "-1 and Eq. (14) be- 
comes 

l l 

E ~  u,~(x)re(x) (A~),j 
t l e 

i = l j = l  

i l 

~ Z  wi(x) l#(x) (B~)~sL*-~(-R~x+Ejr) 
_~ i= l j = I  

l l 

(15) 

EZw~(x) /~j(x) 
i= l j= 1 

Now, by using the tracking error dynamics, Eq. 

(15), we derive the adaptive law for updating the 

desired control parameters /s L* so that the 

c losed- loop plant model, Eq. (12) follows the 

reference m o d e l  Eq. (7). We assume that the 

adaptive law has the general structure 

K( t )  =Fs(x,  Xm, e, r) 
L = G j ( x ,  Xm, e, r) 

(116) 

where Fs and Gs (i=l,  "", l) are functions of 

known signals that are to be chosen so that tile 

equilibrium 

K ~ =  ts  L * ~ = L j ,  e e = 0  (17) 

of Eq. (15), Eq. (16) have some desired stability 
properties. 

We propose the following Lyapunov function 
candidate 

V(e, R~, L) 
l 

= eTPe+ E t,- ( R ~ R : +  s 
j =  ! 

(18) 

where P = p r > o  is a common positive definite 
matrix of the Lyapunov equations (Am) r p +  
P(Am) ij< -Qi~ for QiJ=O[~ >0 (i, j = l ,  -.., l) 

all whose existence is guaranteed by the stability 

assumption for Am. Then, alter some straight- 
forward mathematical manipulations with the 

following properties of trace, 

(i) t r ( A B ) = t r ( B A )  
(it) t r ( A + B )  = t r (A )  +tr (B)  

for any A, B ~ R  n• 
(iii) t r (yx  r )=xry  for any x, y ~ R  "• 

we obtain the time derivative V of V a l o n g  the 
trajectory of Eq. (15) and Eq. (16) as 
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E2w~(x /~,,x~ Q, 
V = _ e  ~ i=lj=t 

t e 

i=lj=l 

I i ~ 

+2tr! ~;~w~{x)~r176 , Pefl+~Kr,~t},. (19) 

I l 

i=l,=l Pert__ Lrff, L, "-2~Y 
l l  ~ ( I  

i=lj=l 

In the last two terms of Eq. (19), if we let 

E K~ F~K ~ 
j =  1 

l l 

E E  w, (x) z~ (x) RyI', (B~) ,~ sgn(b) 
- -  i = l j = l  
I 

l l 

EEw~(x)  ~,(x) 
i - l j = l  

EL~F~L~ 
j = l  

l l 

EEw~(x) /~(x) s r sgn( 6) 
i = l j =  l 

(20) 
Pe x T 

(21) 
Per r 

l l 

i = I j = l  

we can make V to be negative, i.e., 

l l 

E E u,~ (x) m (x) Q~ 
V = _ e  r i=U=I ~ e _ < 0  (22)  

E E w~ (x) ~ (x) 
i = l j = l  

Hence, the obvious choice for adaptive law to 

make Vnegative is 

l 

( , . )  ,~ sen (12 Ew~(x) /~(x) B ~ 
/s (t) = ' <  ,, Pex r 

EXw,(x)/~(x) 
i = l j = l  (23a) 

t @ }sgn(l~)Pex r 
- -  . " =  -[ , 

~w~ 
i = i  

Ewe(x) tls(X) (B~) ~ sgn( li) 
/~=L~(t) = ':~ Per T 

l l 

EEw~(x) /~j(x) 
i<s=l (23b) 

l 

T h e o r e m  2:  Consider the plant model, Eq. (2) 
and the reference model, Eq. (7) with the control 
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law, Eq. (11) and adaptive law, Eq. (23). As- 

sume that the reference input r and the state JCm 

of the reference model are uniformly bounded. 

Then the control law, Eq. (11) and the adaptive 

law, Eq. (23) guarantee that 

(i) K ( t ) ,  L ( t ) ,  e(x) are bounded 

(i i)  e(t)---* 0 as l - - - '  

P r o o f .  

From Eq. (18) and Eq. (22), it directly follows 

that V is a Lyapunov function for the system, 

(Eq. (15), Eq. (16)), which implies that the equi- 

librium given by Eq. (17) is uniformly stable, 

which, in turn, implies that the trajectory / ~ ( / ) ,  

L(t), e(t) are bounded for all t > 0 .  Because 

e : x - - x m  and Xm~ ~,  we have that x = g ~ .  
From Eq. (I1) and r C Y  L, we also have that 

u ~  ~s therefore, all signals in the closed-loop 

are bounded. 

Now, let us show that e ~ 7 L .  From Eq. (18) 

and Eq. (22), we conclude that because V is 

bounded from below and is nonincreasing with 

time, it has a limit, i.e., 

l im V(e( t ) ,  Kj( t ) ,  /Zs(t)) = V=<co (24) 
t ~ o o  

From Eq. (22) and Eq. (24), it follows that 

[ ~ w~l#Q,s 
f~e ~ / i,~=, Jo [ i,~w~/~j edr=-fo Vdr=(Vo-V=) (25) 

where 

Vo= V(e(O), R~(0), s 

On the other hand. from 0--< w~g l, 0 g , a ~  l, and 

&.(Q~s) II e I]2<-erQije<-,;~ax(Qij)II e II ~ 

l 

~, wimQ~J 
{ ?~m(Qis)}mini] e 112<-e T ~,~=1 t e 

~. wi/zs (26) 
i , j=  l 

-< { ,~ax (Q,~) }m.xll e II' 

where 

{ ,~m(Qi,)}mm=min { Amm(Qn), ..., Amm(Qu) } 

{/~ax(Qo) }max=max {/]max(Qn), "- , /]max(Q.) } 

After inserting Eq. (26) into Eq. (25). and 
straightforward manipulation, we have 

we have 
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( g0-  r~> ~ fo~[I e ( go-  V~) 

which implies that e = N .  Because e, K~, L~, 
r~9"&, it follows from Eq. (15) that e~C/&, 

which, together with e~ r~ ,  implies that e ( t ) - - "  0 
as t --*oo. 

4. Numerical  Examples 

In this section, the validity and effectiveness of 

the proposed controller are examined through the 

simulation of tracking control for a flexible joint 

manipulator. 

The control objective is to follow a given tra- 

jectory qa(l)  and to produce a torque vector u 

such that the trajectory error approaches 0 as 

t -- '  oo. In the simulation, we examine the effects 

of parametric variation on behaviors of the 

closed-loop systems with the proposed TS model 

based adaptive control scheme. 

In order to apply the suggested Adaptive Fuzzy 

Control (AFC),  we need a TS fuzzy model rep- 

resentation of the manipulator. 

After the T-S fuzzy model was proposed there 

have been eflbrts to construct an efficient T-S 

fuzzy model for a given nonlinear system. If the 

T-S fuzzy model is not exactly modeling the 

nonlinear system, the designed controller may not 

be able to guarantee the control performance and 

the stability of the closed loop control system. 

To develop a systematic procedure, a T-S fuzzy 

modeling method, exact T-S fuzzy modeling has 

recently been developed. The basic idea of exact 

T-S fuzzy modeling for nonlinear systems has 

first been discussed in the work (Kawamoto, 

1996). Here, the word "exact" means that the 

defuzzified output of the constructed T-S fuzzy 

model is mathematically identical to that of the 

original nonlinear system. 

Consider the single link flexible joint mani- 

pulator shown in Fig. 1 whose dynamics can be 

written as 

iq = xz 

.,4( 2 -- k MgLI sin x t - - 7 ( x l - - x a )  
(27) 

X ~ X /  
K 1 x , = T ( x , - x 3 )  + ~  u 

where, I,  J are, respectively, the link and the 

rotor inertia moments, M is the link mass, k is 

the joint elastic constant, L is the distance from 

the axis of the rotation to the link center of mass 

and g is the gravitational acceleration respective- 

ly. x l ( t )  and x3( t )  denote the link angular vari- 

able and the actuator shaft angle respectively. 

The system, Eq. (27) has a nonlinear term, 

s in(x1(/)) .  If this nonlinear term can be re- 

presented as weighted linear sums of some linear 

functions, then the TS fuzzy model of Eq. (27) 

can be constructed. For this purpose, we first need 

the following theorem. 

Theorem 3: Consider the following nonlinear 

term : 

f n = x l x z " ' X n ,  where x i E  [ ~  ~2~] 

It can be exactly represented by a linear weighted 

sum of the form 

n n 

where gi~i~...~,=~=2X2:j, Iz. " """ ----jlI__21"i'i~ in which 

C~-~ is positive semi-definite for all x ~  E-Q1 ff2z], 

defined as follows. 

F l j _ - - X j + Q - J  ffz ~ xj--22-~ (29) 
Q - s 2 ?  ' s ~ -  s27 

Proof. 
Theorem 3 can be proved using inductive rea- 

Fig. 1 Flexible joint manipulator configuration soning. 
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If n =1,  then Theorem 3 is obviously true. 

When n = 2 ,  the nonlinear equation is f2=x~x2, 

which can be represented as the weighted sum of 

linear functions of x~ as follows. 

where 

-x2+s x2 +.cg 
gl:FiZl, g2 :Fz  2, ffl z 2 , H e= -X2~ gg-S2? 

Assuming that Theorem 3 holds when n=k.  then 

the nonlinear function fh+~=XlX2""Xk+~ can be 

represented by a weighted linear sum of linear 

functions of x~ in the following form. 

2 k+l k+l k41 k+I 

\ ~ iz,i~,...,ih=l l / 

= (  ~,, :li2ia...iklgizia...i,,l@lliaia...ik2giaia...ij,2)Xl (31) 
\ 12,13,...,ik= ] 

i2,i3,"',ik+l=l 

Hence, Theorem 3 holds for all n. 

C o r o l l a r y  1: Assume x(t)~[f21 ,.CA]. The non- 

linear term 

f (x (t))  = s in  (x ( t))  (32) 

can be represented by a linear weighted sum of 

linear functions of the form 

f (x(t) )=(~=~ll~g~(x(t) ) )x( t )  (33) 

where 

&(x( t )  ) =1,  &(x( t )  ) = a  and 

~1 =F~, m=F~, 
~ =  s in (x ( t ) )  --ax(t)  , ~ =  x(t)  - - s in(x  (t))  

(1 - a )x ( t )  ( I - a ) x ( t )  
tbr x (t) =#0 

~ = 1 ,  ~ = 0  for x ( t ) = 0  and 

a=s in -1  (max (s 

proof .  

It follows directly from Theorem 3. 

Using Corollary 1, an exact TS fuzzy model of 

Eq. (27) can be represented as follows. 

Plant rules : 

Rule 2 : IF xx(t) is about z'2z THEN 

2 (t) =Azx  (t) +B2u (t) 

where 

I mgOl_k 

t ] Oo 
BI=Bz= 0 I 

LTJ 

(34) 

0 0 A 2 = - T -  ~ 0 
' 0 0 0 

o ~k ~ o - (35) 

and the membership functions 'about ,QI' and 

"about ~Qz" are, respectively, 

sin ( X l  (~t) ) - -  a gC 1 ( t )  
F~ (x,) = ( 1 - a ) x ~ ( t )  

x~ (t) --sin (xl (t)) 
F_, (Xl) -- ( I - a ) x , ( t )  (36) 

for xl(t) 4-0 
• = 1 ,  ~ = 0 ,  for Xl(t )=0 

where a = s i n  -1(max (g21, ~2z)) and ~. is positive 

definite for all xl(t) E [3"21 g2z]. In the simulation, 

[,(21 ~22] was chosen as [--2.85 2.85]. 

Although the exact fuzzy model of the flexible 

joint manipulator does not have any modeling 

uncertainties since the deffuzzified output of the 

TS fuzzy model is exactly same to that of original 

nonlinear flexible joint manipulator Eq. (27), the 

exact modeling scheme may have some demerit. If 

the nonlinearities in the system model have very 

complicated form or the number of them is very 

large, the methodology presented in Theorem 3 

can not be applied easily. 

An alternative TS fuzzy modeling technique, 

the linearization method is often utilized to con- 

struct a T-S tuzzy model for a nonlinear system. 

The linearization based TS fuzzy modeling tech- 

nique is the most popular as it is simple and the 

consequent rule base becomes intuitive although 

the modeling error inevitably exists. 
By applying the Lyapunov linearization meth- 

Rule I : IF xl(t) is about $21 THEN od (Slotine et al., 1991) at operating points 

2(t) =Aax(t)  +Bau(t)  x l = - z t ,  0, yr, we obtain the TS fuzzy model for 

Copyright (C) 2003 NuriMedia Co., Ltd. 
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the robot manipulator as followings. 

Rule 1 : IF xa is about - a T H E N  2=A~x+BlU 
Rule 2 : IF x~ is about 0 THEN 2=A2x+B2u 
Rule 3 : IF x~ is about ~r THEN 2=A3x+B3u 

0 

AI:A3: 0 

(37) 

k _Mg1_k 
0 7  A,2= I O kI 

0 0 ' 0 0 

The whole state space formed by state vector of 

the original nonlinear equations is partitioned 

into three different fuzzy subspaces whose center 

is located at the center of corresponding member- 

ship functions (MF) shown in Fig. 2. 

In order to apply the proposed adaptive fuzzy 

control scheme, the reference model for the plant 

state x to tbllow should be specified. In this 

simulation, the closed loop eigenvalues for each 

subsystem are chosen to be the same, which in 

turn make the reference model for each fuzzy 

subspace to be the same and linear one as fol- 
lowing : 

i 01 001 0 0 1 0 0 
3Cm= Xm+ r (39) 

0 0 0 1 

--4 --10 --10 --5 

The PDC controller shares the same fuzzy sets 

with fuzzy model to construct its premise part. 

That is, the PDC controller is of the following 

form : 

NB (about ->z) ZE (about O) PB (about 7r) 

)' .~1 O) 
--7( 0 >'r 

Fig. 2 Membership functions 
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R i : If xl is MF,. 
(40) 

then u(t) = - K i [ x 1 x 2 x 3 x 4 J  r + Lir  (t) 

The feedback control gains Ki and Li  of each 

fuzzy state feedback controller are updated by 

adaptive law so that the closed-loop plant follows 

the reference model, Eq. (39). 

Now by using Eq. (23), we derive the adaptive 

law for updating the elements of K~ and L~ so 

that the closed-loop plant follows the reference 

model. 

K~(t) = ( ~ I sgn(l~)BmrPexr 

(41) 
L~(t) = 1 6 \~1 sgn(lj) Br  pe r r 

where /3m r = [ 0  0 0 1]. 

The parameters of nominal plant model used in 

this simulation are as follows. 

I=0 .03  Kg 'm  2, L = I  m, k = 3 1 N . m  
(42) 

J=0 .004  K g ' m  2, and g = 9 . 8  m/s z 

To test the adaptation abilities of the proposed 

scheme, the mass of link is varied with time as 

M(t)  =0.2687+0.15 sin 37rl and k is not known 

exactly. The initial value for state xl is assumed 
Jr 

as x l = ~  and the initial parameter of k for the 

adaptation, k (0) =28. 

The designed adaptive fuzzy controller was 

applied to the original nonlinear model of the 

flexible joint maipulator, Eq. (27) in the simula- 

tion. Figs. 3--5 show the simulation results of 

regulation of joint angle with exact fuzzy model 

(EFM) and linearization based fuzzy model 

(LFM). From these figures, It is shown that the 

regulation problem can be solved under para- 

metric uncertainties. Figs. 6--8 show the tracking 

control results with both EFM and LFM. In both 

cases, the tracking can be accomplished success- 

fully. The response characteristics of EFM based 

control such as response time is better than that 

of LFM based control. This is due to the fuzzy 

modeling ability of LFM. If more fuzzy rules, 

that is, linearization at more operating points can 

be possible, the difference between both the 

models can be reduced. 
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5. Conclusions 

In this paper, we have used exact fuzzy mo- 

deling method and linearization based modeling 

method to represent the flexible joint  manipulator  

and the adaptation law adjusts the controller 

parameters on-l ine so that the plant output tracks 

the reference model output. The developed adap- 

tive law guarantees the boundedness of all signals 

in the closed-loop system and ensures that the 

plant state tracks the state of the reference model 

asymptotically with time for any bounded refer- 

ence input signal. 
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